4(-4x^2-8x+1)=-11(1+2x+x^2)

Simple and best practice solution for 4(-4x^2-8x+1)=-11(1+2x+x^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(-4x^2-8x+1)=-11(1+2x+x^2) equation:



4(-4x^2-8x+1)=-11(1+2x+x^2)
We move all terms to the left:
4(-4x^2-8x+1)-(-11(1+2x+x^2))=0
We multiply parentheses
-16x^2-(-11(1+2x+x^2))-32x+4=0
We calculate terms in parentheses: -(-11(1+2x+x^2)), so:
-11(1+2x+x^2)
We multiply parentheses
-11x^2-22x-11
Back to the equation:
-(-11x^2-22x-11)
We get rid of parentheses
-16x^2+11x^2+22x-32x+11+4=0
We add all the numbers together, and all the variables
-5x^2-10x+15=0
a = -5; b = -10; c = +15;
Δ = b2-4ac
Δ = -102-4·(-5)·15
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-20}{2*-5}=\frac{-10}{-10} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+20}{2*-5}=\frac{30}{-10} =-3 $

See similar equations:

| 125*5^(3x)=27*27^(x) | | -7(3-m)+5m=-45 | | 2x^2+22x+340=1292 | | 2x-17=1-7x | | 3x-9=28x+28 | | 27x^2+54x+7=0 | | 12(t-4)-8t=88 | | C. 1,2+0,8∙(5x–3)–(2–x)=0 | | 40x+6=-10x+1 | | 3x+7-4(x+1)=8 | | 3-5(p-4)=53 | | 6x+21=8x+16 | | 5x-9=12+2x | | 7y+12=5y+40Y= | | x/2+3.5=4x/3-7 | | 100x-89=x+10 | | {5y+2=12}y= | | -4(1-5x)=-4 | | 9x-2=10x-2 | | 4x+3x-2x=4 | | 2x+7=10x-2 | | -30=-8n-7(5n-8) | | 6=6(8k-7) | | 7x+8=18x+2 | | -5(2t+2)=10 | | X-99=1-4x | | 5x+15=8-5x | | -64=-4(2x+8) | | 10-5x=5x-90 | | 2x-3/x+1=2x+3/x-2 | | X^2+50x-240=0 | | -13x+4x=-39+26x |

Equations solver categories